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Terminology and Notation

Periods on
Arithmetic
Moduli

Spaces Definition (1.1)

The free group Fs over a given set S consists of all
ermain . .
sl expressions (a.k.a. words, or terms) that can be built from
Robert Argus,

Patrick members of S, considering two expressions different unless their
s equality follows from the group axioms.

Definition (1.2)

A finite field is a finite set on which the four operations
multiplication, addition, subtraction and division (excluding by
zero) are defined, satisfying the rules of arithmetic known as
the field axioms.
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Terminology and Notation (cont'd)

Periods on
Arithmeti - .
Moduli Let Iy be a finite field of order q.

Spaces

Diaaledin

(

Jermain . . -
e The general linear group of degree n over a field g is the
Robert Argus,

Patrick set of n X n invertible matrices together with the operation of
e matrix multiplication. We denote this group by GL,(F) .

Definition (1.3)

Definition (1.4)

The special linear group of degree n over a field I, is the
set of n X n matrices with determinant 1 together with the

operation of matrix multiplication. We denote this group by
SLy(Fq).
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Dynamical System

Periods on
Arithmetic
Moduli

Spaces Let Sbeasetandlet F: S — S be a map from S to itself.

Diaaledin The iterate of F with itself n times is denoted
(Dia) Taha,
Jermain
McDermott, n
Robert Argus, F( )—FOFO---OF
Patrick
Brown

A point P € S is periodic if F(n)(P) = P for some n > 1.
The point is preperiodic if F(k)(P) is periodic for some k > 1.
The (forward) orbit of P is the set

Ok(P) = { P.F(P), FO(P), FE(P), - }.

Thus P is preperiodic if and only if its orbit Of(P) is finite.
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The Setup
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Arithmetic

Moduk Define Onj(F,) := Inj(F;)/Inn(F,), where Inj(F,) and Inn(F,)
D_pélce: are the monomorphisms and inner automorphisms from the free
SR  group of rank r to itself, respectively. Consider

WS () = Hom(F,, SLn(Fq))/SLn(Fq) and let Onj(F,) act on Q.
Robert Argus,
Patrick
Brown

The Process
Fix [a] € Onj(F;) and [f] € Q.
Choose a’ € [a] and f € [f].
Compute af') == f oa.
@ Find [a'(f)] € Q and iterate.

This defines a dynamical system. As g is a finite field, it is
reasonable to ask whether there exist periodic orbits.
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The Moduli Space
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It turns out that Hom(F,, SL,(Fg)) is a variety. One might
then ask:

Is Q = Hom(F,,SLy(Fq))/SLn(Fg) a variety? No!

Does there exist an approximation to Q that is a variety

X, where X C Q7 Yes!

How do we find such a variety X7
The variety X := [Hom(F,, SL,)//SLs](Fq) is obtained from Q
by throwing out the strictly upper triangularizable matrices to
obtain the following Hom(F,, SL,(F4))*/SLA(F4), which is a
moduli space.

Diaaledin

gus,
Patrick
Brown

Diaaledin (Dia) Taha, Jermain McDermott, Robert Argus, Pati  Periods on Arithmetic Moduli Spaces



definitions

Periods on

A etic Denote Q1, = Hom(F1,SL(2,Fq))/SL(2,Fq) (this is an

Spaces instance of the set Q Robert introduced, the instance
Gh ot where r = 1).

Jermain i .
acDermor, m Note that this set X, (SL(2,Fy)) is not the same as the
obert Argus,

Patrick set

Brown

Xr, (SL(2,Fq)) = Hom(F1, SL(2,Fq))//SL(2,Fq) C Q14
which discards " nondiagonalizable” elements.

m Also, define by O(¢, ) the dynamical system
a(¢), a®(9), a3(), ... (¢ € Q1.q, € Onj(F1) where Fy is
the free group of rank 1).
m Since (F1,-) = (Z,+) (F1 is cyclic generated by a, Z is
cyclic generated by 1), we have
Inn(F;) = Inn(Z) = {idz}, the trivial group.
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identifications
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: m Again, F; is cyclic, so a homomorphism p: F; — G is
e determined by where a (the generator of F7) is sent in G.

Robert Argus,

Peliick m From now on, identify an injective homomorphism
a—a":neZ—{0} with n
m Similarly, we identify ¢ € Hom(Fy,SL(2,Fg)) with A
where ¢(a) = A € SL(2,Fq).
m We will identify yInn(F;) = {yoidz} = {y} € Onj(F1) by
7.
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how to study Dyn
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m This turns O(¢, ) into O(A, n) where ¢(a) = A,
a(a) = a".

McDermott,

Robert Argus, m Thus we have a(®), a?(¢), a3(¢), ... equivalent to

Brown A AT AP AR

m Notice that in the set Qq 4, we aren't dealing with
¢ € Hom(F1,SL(2,FFy)) per se, but rather the conjugacy
class of ¢ under the action of SL(2,F).

m This identification of the conjugacy class of ¢ with the
element ¢ will make sense after the following.

Diaaledin (Dia) Taha, Jermain McDermott, Robert Argus, Pati  Periods on Arithmetic Moduli Spaces



P: Qg xOnj(F)—N
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m We now want to define the map P : Q1 4 x Onj(F1) - N
Robert Argus, by sending (¢, ) (considered as (A,n)) to the smallest
o) positive number m if O(¢, «) has so called " prime" period
m, or 0 if O(¢, ) isn't periodic.
m " Periodic” simply means there is a kth place in the
sequence A, A”,A”z, A”3, ... where we have A™ = A. The

"period” of the system is the integer k.
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finding the period
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Diaaledin
L s The reason we are identifying the conjugacy class of A

McDermott, 1 i . ! .
Robert Argus, with the element A is because the period is conjugate
Patrick invariant.

Brown
m This comes from noting that (gAg™1)" = hyo iff

A" = by for any g € SL(2,Fy).
m We have shown in this case that the element A has order
relatively prime to n iff A has a prime period.
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orders?

Periods on
Arithmetic

s m The question now arises of orders of elements in SL(2,F).

Spaces

m Two important facts mostly answer this question: that
order and characteristic polynomial are also conjugate
invariant; i.e., a conjugacy class of matrices has its own
Robert Argus, . .. .
Patrick period and characteristic polynomial.

Brown

ia
(Dia
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orders?

Periods on
Arithmetic

s m The question now arises of orders of elements in SL(2,F).

Spaces

m Two important facts mostly answer this question: that
order and characteristic polynomial are also conjugate
invariant; i.e., a conjugacy class of matrices has its own
Robert Argus, . .. .
Patrick period and characteristic polynomial.

Brown

m If the characteristic polynomial of M € SL(2,Fg)
(pm(t))has two distinct roots, then our matrix is
diagonalizable (Jordan form).
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orders?
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s m The question now arises of orders of elements in SL(2,F).

Spaces

m Two important facts mostly answer this question: that
order and characteristic polynomial are also conjugate
invariant; i.e., a conjugacy class of matrices has its own
Robert Argus, . .. .
Patrick period and characteristic polynomial.

Brown

m If the characteristic polynomial of M € SL(2,Fg)
(pm(t))has two distinct roots, then our matrix is
diagonalizable (Jordan form).

m If the characteristic polynomial has no roots in [Fg, then it
is diagonalizable over F .
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orders?

Periods on

Arnmetic The question now arises of orders of elements in SL(2,F).

Spaces

Two important facts mostly answer this question: that
Diaaledin . . . .
(Dia) Taha, order and characteristic polynomial are also conjugate
Jermain . . . . . .
McDermott, invariant; i.e., a conjugacy class of matrices has its own
Robert Argus, . A .
Patrick period and characteristic polynomial.

Brown

m If the characteristic polynomial of M € SL(2,Fg)
(pm(t))has two distinct roots, then our matrix is
diagonalizable (Jordan form).

m If the characteristic polynomial has no roots in [Fg, then it
is diagonalizable over F .

m Otherwise, our matrix is " parabolic”, and has a double
root in Fy (given the matrix isn't /o, these are in their
own class)
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orders in SL(2,F,)

The following table gives orders of elements in SL(2,F,).

[ Conjugacy class type Representative
+1
” E

Parabolic (a € Fq, alpha = 1 orac # w?) A= [

] If tr(A)=2, char(FFq); if tr(A)

= -2, 2char(

Diagonalizable over Fq

a
0
. . [c
Diagonalizable over ]qu 0

5 (will divide g + 1)

In this table:
*o = 1 or is not a square in Fq.

**3 represents ¢(a) where ¢ : (Fg, ) — (Zg—1,+)

***E represents y(c) where  : (]qu, 2 = (Zqz_17 +) with ¢, v being isomorphisms.
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does P(¢, a) return 0 or n?
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m We now know the orders of elements in SL(2,Fg). This
along with the n corresponding to alpha determines
R“S.SE’.‘;‘"L‘C..‘;T.;, whether P returns 0 or not.
Patrick
Brown m This answers the question of whether O(¢, @) has a prime
period.

m To find this prime period is equivalent to solving nk =1
mod ord(A) for k.

m This yields that factors of ¢(ord(A)) are the only
candidates for k (¢ is the euler phi function).
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does P(¢, a) return 0 or n?

Periods on
Arithmetic

Moduli m In any group G with a € G of finite order k = |a]|, a is
Spaces periodic under 7,(a) = a" if and only if gcd(k,n) =1
(assume n > 1).
Robert Argus,

Patrick
Brown

Diaaledin (Dia) Taha, Jermain McDermott, Robert Argus, Pati  Periods on Arithmetic Moduli Spaces



does P(¢, a) return 0 or n?

Periods on
M odut m In any group G with a € G of finite order k = |a]|, a is
Spaces perlodlc under Tn(a) = an I'F and Only |f ng(k7 n) = 1

(assume n > 1).

MeDarmatt, m (<) If gcd(k, n) = 1, then by Euler's theorem, n?(%) = 1
':{n"ickb : mod k. Thus, in the sequence A,A“,A”z, ..., since
A" = A™ with #/ = m mod k for any j € N, we will find

A again in at most the ¢(k)'th position.
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does P(¢, a) return 0 or n?

Periods on
*Viodu m In any group G with a € G of finite order k = |a|, a is
spaces periodic under 7,(a) = a" if and only if gcd(k,n) = 1
(assume n > 1).

m (<) If gcd(k, n) = 1, then by Euler's theorem, n?(%) = 1
mod k. Thus, in the sequence A,A“,A”z,..., since
A" = A™ with #/ = m mod k for any j € N, we will find
A again in at most the ¢(k)'th position.

m (—) If Ais periodic, assume gcd(k,n) # 1. Then nis a
zero divisor modulo k. Since an element of a ring is a zero
divisor if and only if it is not a unit, there is no s € N such
that n°® = 1 mod k or else n°~! would be an inverse of n,

making n a unit modulo k. This is a contradiction, hence
ged(k,n) = 1.

Brown
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what is the set Q, 47
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S m We used the language of an element of Q; 4 as being
(Dia) Taha, "diagonalizable” because we could identify an equivalence

McDermott, class with a diagonalizable matrix in SL(2,Fy).

Robert Argus,
e m In fact, for general r, we can identify an element of Q, 4 to
be an element in SL(2,F,)"/SL(2,Fq) =
SL(2,Fq) x SL(2,Fg) x ... x SL(2,F4)/SL(2,Fy).

m To see how to identify Hom(F,, SL(2,Fg)) with
SL(2,F,)", send an element p — (p(w1), p(w2), ..., p(w;))
where wi, ..., w, are the generators of F,. This map is a

bijection.
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Moving to a Free Group of 2 Letters
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5 m We move from a single matrix A € SLy(Fg) to
Patrick {(A,B) : (A, B) € SLy(F,)?} and several things change.

Brown

m We go from having g + 4 Conjugation Classes to
23 +q*> +4qg+1

m We change from Onj(F1) to Out(F2)
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SPaces. m Out(F2) is generated by 3 Nielson Transformation

() i m Denote the Nielson transformations on Fy = (x1, x2) as
follows:

Robert Argus,
Patrick
Brown
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Out(F2) Cont.
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Out(F2) is |somorph|c to GLo(Z)

Robert Argus,
Patrick
Brown
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Products of the Nielson Transformations
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Action of Aut(F,) on Hom(F;, SLy(Fg))
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Che For any (A, B) € SL(2,F) and m € Z, the Nielson

Jermain

e transformations act as follows:

Robel gus,
Patrick

Brown Lm ° (A, B) - (A(il)m7 B)?
{(B,A) m is odd

™. (A, B) = and

(A,B) miseven’

n™-(A,B) = (AB™,B).
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Periods for Out(F2) Length 1

Let (A, B) € SL(2,Fq)*2.
Case 1: Since (2 = id, we have that O,((A, B)) is
periodic, with period at most 2.

Case 7: Same as for ¢.

Cases 1 and 1~ (and ™ for m € Z): Since
#SLy(F,) = ¢* — g < oo is a finite group, raising any
element in it to its order gives the identity. We thus get
n:l:ord(B) . (A, B) — (AB:I:ord(B)’ B) — (A, B) So
O,((A, B)) is periodic with period ord(B) | #SL2(Fg). In
fact, for any m € Z we have that O,=((A, B)) is periodic
of period
ord(B)
ged(m, ord(B))”
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Periods for Out(F2) candn

Periods on Case for tn and ne (and ¢tn™ and n™. for m € 7Z) The period of

Arithmetic

Moduli (A’ B) Is

Spaces

D-id(ll(‘(lill Oan((A, B)) (A, B) — (A_le, B) —
i (B-mABM B) — (B~mA~1Bm+1 B) —
McDermott,

Robert Argus,

Patrick

Brown (B~kmABK™ B) — (B—kmA-1Bk+1)m By _,
Note that
(™) (A, B) = (B~MAB", B) = (75-n(A), B),
and so O,,;=((A, B)) is periodic of period at most
" ord(B) '
gcd(ord(B), mk)

We get the same behavior for ..
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Periods for Out(F2) Tandn
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Case for 7n and nr
We have that

X1 X2
nT = .
X2 X1X2

It can be easily seen that for any (A, B) € SL(2,F,) andn € N
that

(17)"((A; B)) = (sn, Sn+1),

where
SO = A,
s1 = B, and
Sp42 = SpSpt1 for n > 0.

Note that (sp)nen is the “Fibonacci sequence” on the group
SL(2,Fy).
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Periods on Hom(F, SL»(Fg))

Periods on . . . .
Arithmetic We have the following fact about finite dynamical systems.
Moduli
Spaces

Proposition

e, Let X be a finite set, and f : X — X be a function. It follows
McDermott, that

Robert Argus,
Patrick

Brown any element x € X is preperiodic, and

if f is invertible, then every x € X is periodic.

From the invertibility of the action of ¢, 7, and ) we get the
following:

Corollary

Let G be a finite group, then under the action of
Aut(Fy) ~ Hom(F,, G) every orbit is periodic.
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Moving from Hom(F,, SLy(Fq))/SL2(Fy,) to
Hom(F,, SL5(Fq))//SL2(F )
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Diaaledin
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Jermain

McDermott, m Hom(F>, SL>(Fq))/SLo(Fg) is computationally intensive.

Robert Argus,

e m We have a better option Hom(F, SLo(Fq))//SL2(Fq)

Brown

m This allows us to transition from
{(A,B): A,B € SLr(Fq)} to {(x,y,2) 1 x,y,z €
Fq & x= Tr(A),y = Tr(B),z = Tr(AB)}
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Trace Functions
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The traces of the generators X, Y, XY parametrize
T SL(2,Fq)*? ) SL(2,F4) as the affine space F3.

Patrick
Brown
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Trace Functions

Periods on
Arithmetic
Moduli
Spaces

Diaaledin

The traces of the generators X, Y, XY parametrize
8 SL(2,F4)*? ) SL(2,F4) as the affine space F3.
Brown The character map Tr : SL(2,Fq)*? J SL(2,Fq) — F3 given by

[A, B] — (trA, trB, tr(AB))

is an isomorphism.
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Automorphisms

Periods on The action of Out(F2) on SL(2,F4)*? J SL(2,F,) is generated
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Moduli by the three involutions
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Automorphisms

Periods on The action of Out(F2) on SL(2,F4)*? J SL(2,F,) is generated

Arithmetic

Moduli by the three involutions

Spaces

(D) Tob i [AB] — [ATLB]
MzDommatt, ™ :[B,A] — [A B]
RoP,f;'t..icko 1S, U [[A, B]] — IIAfleB]]

Brown
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Automorphisms

Periods on The action of Out(F2) on SL(2,F4)*? J SL(2,F,) is generated

Arithmetic

Moduli by the three involutions

Spaces
F[AB] — [ATLB]
T*S[[B,A]] = IIAvB]]
v [A Bl ~ AT AB]

Brown

This induces the following polynomial automorphisms on the
affine space Ff,
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Automorphisms

Periods on The action of Out(F2) on SL(2,F4)*? J SL(2,F,) is generated

Arithmetic

Moduli by the three involutions

Spaces

Diaaledin Pl [[A, B]] —> [[Afl, B]]

(Dia) Taha,

o w:[B.A] ~ [AB]
ROblgutrickD . V* : [[A7 B]] i IIA?].’ AB]]

Brown

This induces the following polynomial automorphisms on the
affine space Ff,

h:(x,y,z) — (x,y,xy—z)
u:(x,y,z) = (y,x,2)
vi(x,y,z) — (x,z,y)
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Automorphisms

Periods on The action of Out(F2) on SL(2,F4)*? J SL(2,F,) is generated

Arithmetic

Moduli by the three involutions

Spaces

EEl CHIA B~ [AT B
Mjgl1'“1‘1igtt, T* : [[87 A]] = IIA7 B]]
ROhlgatric’l’(guSv I/* . [[A, B]] —> IIAil, AB]]

Brown

This induces the following polynomial automorphisms on the
affine space IF?,

h: (X,y,Z) = (Xay,Xy—Z)
u:(x,y,2) = (y,x2)
In what follows, denote the group they generate
(h,u,v) < Aut(F}) by g,
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What We Do?
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Study the dynamics of [z, ~ F3

Brown
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Study the dynamics of [z, ~ F3

Robert Argus,
Patrick .
Brown m What is the structure of 'p ?
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Study the dynamics of [z, ~ F3

Robert Argus,
Patrick .
Brown m What is the structure of 'p ?

m Any interesting invariants?
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What We
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i 3
Robert 'Argu's, StUdy the dynamlcs Of rIFq ~ ]Fq
Broun m What is the structure of 'p ?

m Any interesting invariants?
m What do the orbits/periods look like?
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The Structure of Iy,
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Moduli In the integer case, it was shown by Goldman (2003) that

Spaces

i o [y = PSL(2,7).

Robert Argus,
Patrick
Brown
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The Structure of Iy,

Periods on
Arithmetic

Moduli In the integer case, it was shown by Goldman (2003) that

Spaces

[z = PSL(2,7).

Robert Argus

Sl Orbits Group (two days ago) showed that if g = p”, then I'p_ is
Brown a quotient of the (2,3, 3p(p>" — 1)) Coxeter group,
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[z = PSL(2,7).
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Sl Orbits Group (two days ago) showed that if g = p”, then I'p_ is
Biouy a quotient of the (2,3, %p(pz’7 — 1)) Coxeter group, i.e.

1 n__
(x1, 32, x3 | (xi)% (x1x2)?, (x2x3)3, (xax3) 2P 1) = 1),
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The Structure of Iy,

Periods on
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Moduli In the integer case, it was shown by Goldman (2003) that

Spaces

[z = PSL(2,7).

McDermott,
Robert Argus,

St Orbits Group (two days ago) showed that if ¢ = p”, then Mr, is
Brown a quotient of the (2,3, 3p(p?" — 1)) Coxeter group, i.e.

1 n_
<X1,X2,X3 ‘ (X,')2, (X1X2)2, (X2X3)37 (X1X3)§P(P2 1) _ ]_>

We also demonstrated Z, x Z», S3, and D;p(pQLI) as
2
subgroups.
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The Structure of Iy,

Periods on
Arithmetic

Moduli In the integer case, it was shown by Goldman (2003) that

Spaces

Diaaledin rZ > ID~SL(27 Z)
Patrick Orbits Group (tWO days ago) showed that if g = p”, then rFq s
Brown a quot|ent of the (2’ 37 %p(pzn — ]_)) COXeter grOUp, |e

1 n__
(x1, 32, x3 | (xi)% (x1x2)?, (x2x3)3, (xax3) 2P 1) = 1),

We also demonstrated Zy X Zo, Sz, and D1, 2, 4y as
5p(p?"—1)

subgroups.
Note that PSL(2,7Z) is a (2,3, 00) Coxeter group. It all fits
together!
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Sz The trace of a commuator [X, Y] = XYX~1Y~! gives us the
e Fricke polynomial
Robert Al';g,ll';'., I{(X,y, Z) == X2 + y2 + 22 —_ XyZ — 2

Patrick
Brown
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Fricke polynomial
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Robert Argus, H(X, y, Z) = X + y + z — XyZ — 2
Patrick
Brown

Turns out « is invariant under the generators h, u, v.
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Turns out « is invariant under the generators h, u, v.
This implies two things:

That g, < Aut(k).
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Spaces The trace of a commuator [X, Y] = XYX~1Y~! gives us the
Fricke polynomial
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ott, 2 2 2
Robert Argus, H(X, y, Z) = X + y + z — XyZ — 2
Patrick
Brown

Turns out « is invariant under the generators h, u, v.
This implies two things:
That g, < Aut(k).
That x1(t) partitions F3 into I'g -invariant surfaces.
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Invariants

Periods on
Arithmetic
Moduli

Spaces The trace of a commuator [X, Y] = XYX~1Y~! gives us the

L Fricke polynomial

Jermain

McDermott, 2 2 2

Robert Argus, /{(X, _y, Z) = X + y + z — XyZ — 2
Patrick
Brown

Turns out « is invariant under the generators h, u, v.
This implies two things:
That g, < Aut(k).
That x1(t) partitions F3 into I'g -invariant surfaces.

So studying the dynamics I'r, ~ ]Fz is equivalent to studying
the dynamics of [y, ~ k71(t).
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Interlude: The Markoff-Hurwitz Equation
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The equation
x> 4 y? + 2% = 3xyz
over Z is called the Markoff~-Hurwitz Equation. It is closely

related to Diophantine approx.
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The equation
x> 4 y? + 2% = 3xyz

over Z is called the Markoff~-Hurwitz Equation. It is closely
related to Diophantine approx.

Hurwitz (1907) proved by a descent argument that you can
start with (1,1,1) and get all the other positive integer
solutions in the orbit 'z - (1,1,1).

Robert Argus,
Patrick
Brown
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Interlude: The Markoff-Hurwitz Equation
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The equation
x> 4 y? + 2% = 3xyz

McDermott,
Robert Argus,
Patrick
Brown

over Z is called the Markoff~-Hurwitz Equation. It is closely
related to Diophantine approx.

Hurwitz (1907) proved by a descent argument that you can
start with (1,1,1) and get all the other positive integer
solutions in the orbit 'z - (1,1,1).

So in reality, we are studying a finitary Markoff-Hurwitz
equation

x>+ y? 4+ 22 = xyz + k.
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Upper Bound on the size of 'z, —Orbits
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e in
McDermott, N1 H 3 _ 3
Sesesel A trivial bound is #[g = g°.
Patrick
Brown
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A trivial bound is #F3 = ¢*. Mariscal (2012) showed that

Brown

#r71(t) = ¢° £{0,2,3, or 4} g+ 1,
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Upper Bound on the size of 'z, —Orbits
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Spaces

Diaaledin

A trivial bound is #F3 = ¢*. Mariscal (2012) showed that

Brown

#r71(t) = ¢° £{0,2,3, or 4} g+ 1,

this gives us a ~ g upper bound for the ['r,-orbits.
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One Letter: h, u, or v
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Diaaledin Each generates a copy of Z,.

Jermain B
RMICD(;"X]ZH', * FIX(*) #FIX( )

0)Pl;;'{tric,kt‘“7v h XY — 2Z q2
rown U X — Y q2
v Y=Z7 q°

1, (x,y,z) € Fix(x

#0.(x,y,2) = ( ) . )

2, (xy,2) ¢ Fix(x)
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Two Letters: u and v
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edin

(Dia) Taha, They generate S3.
Jermain

McDermott,

Robert Argus,
Patrick
Brown
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Two Letters: u and v
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They generate S3.

Robert Argus

S * Fix(x) #Fix(x)
Brown uv X — Y — Z q

1, (x,y,z) € Fix(uv)

#OwY. 2 =03 (). 2) ¢ Fix(u)
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Two Letters: h and u
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din

(Dia) Taha, They generate Zy X Zo.

Je
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Two Letters: h and u

Periods on
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They generate Zy X Zo.

McDermott,
Robert Argus, B
Patrick FIX(*)

Brown X —= Y7 Z = 271XY

Diaaledin (Dia) Taha, Jermain McDermott, Robert Argus, Pati  Periods on Arithmetic Moduli Spaces



Periods on
Arithmetic
Moduli
Spaces

Diaaledin
ia) Taha,
Jermain
McDermott,
Robert Argus,
Patrick
Brown

Two Letters: h and u

They generate Zy X Zo.

*

Fix(x) #Fix(x)

hu | X=Y,Z =27IXY q

#Ohu(X7Y7 Z) :

Diaaledin (Dia) Taha, Jermain McDermott, Robert Argus, Pati

1, (x,y,z) € Fix(hu)
2, (x,y,z) ¢ Fix(hu)
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Two Letters: h and v
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Two Letters: h and v
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Fix(x)
McDermott,
Robert Argus, Y = Z7 Y(X — 2) = 0

Patrick
Brown
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Two Letters: h and v

They generate D;
2

p(p?"—1)"

Fix(x)

#Fix(x)

hv

Y=ZY(X-2)=0] 2¢—1

#Ohv(xa}/72) =

L
P,
div. of g — 1,
div. of g+ 1,

(x,y,z) € Fix(x), else
x =32
x?> —4isa # 0 quad. res.

x?> — 4 is not a quad. res.
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Oh, the Places You'll Go!

Periods on
Arithmetic
Moduli

SEeE Lots of places, actually.
D—“"I;f;i:l], m Flesh out our understanding of the arithmetic dynamics of
Mjl()'<n.‘.1‘1lgtt rF ~ ]F?;
S m What is the size of 'y, ?
AT m What exceptional subgroups does it have?
m What is the exact size of the orbits?
m When is the action transitive on a surface k~1(t)?
m
u

q

How many connected components can £~ 1(t) have?

m Start the same program for the action of
Out(F3) ~ SL(2,Fg)* /) SL(2,Fy).
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