Student Research Talks (StReeTs)

Mason Experimental Geometry Lab (MEGL)

Decomposition of Complex Hyperbolic Isometries by Involutions

Cigole Thomas

Department of Mathematics Sciences George Mason University

Abstract

A k-reflection of the n-dimensional complex hyperbolic space $H^n_{\mathbb{C}}$ is an element in U(n,1) with negative type eigenvalue λ , $|\lambda| = 1$, of multiplicity k+1 and positive type eigenvalue 1 of multiplicity n-k. We will discuss the isometry group of the complex hyperbolic space and prove that a holomorphic isometry of $H^n_{\mathbb{C}}$ is a product of at most four involutions and a complex k-reflection, $k \leq 2$. Along the way, we will also show that every element in SU(n) is a product of four or five involutions according as $n \neq 2 \mod 4$ or $n = 2 \mod 4$. The talk doesn't require prior knowledge of complex hyperbolic space and uses linear algebra for most of the proofs. This is joint work with K. Gangopadhyay.

Date: Friday, November 18, 2016

Time: 2:30pm-3:30pm

Place: Exploratory Hall 4106

Pizza and soda will be served at the presentation.

For further information or for special accommodations, please contact Sean Lawton via email at seanlawton@gmail.com or drop by the MEGL.

¹Picture by Richard Schwartz